QUESTION BANK

CLASS: IX SUBJECT: MATHEMATICS TOPIC: NUMBER SYSTEM

MULTIPLE CHOICE QUESTION

1. The rational number $\frac{3}{40}$ is equal to
(a) 0.75 (b) 0.12 (c) 0.012 (d) 0.075
2. A rational number between 3 and 4 is a) $\frac{3}{2}$ b) $\frac{4}{2}$ c) $\frac{7}{2}$ d) $\frac{7}{4}$
3. Which one of the following is an irrational number
a) $\sqrt{4}$ b) $3\sqrt{8}$ c) $\sqrt{100}$ d) $-\sqrt{0.64}$ 4. The value of $(3 + \sqrt{3})(3 - \sqrt{3})$
(a) 0 (b) 6 (c) 9 (d) 3
5. The value of $(\sqrt{5} + \sqrt{2})^2$
a. $7+2\sqrt{5}$ b. $1+5\sqrt{2}$ c. $7+2\sqrt{10}$ d. $7-2\sqrt{10}$ 6. The value of $(\sqrt{5}+\sqrt{2})(\sqrt{5}-\sqrt{2})$
(a) 10 (b) 7 (c) 3 (d) $\sqrt{3}$
7. The value of $(3+\sqrt{3})(2+\sqrt{2})$
8. On rationalizing the denominator of $\frac{1}{\sqrt{7}-\sqrt{6}}$ we get,
a. $\frac{\sqrt{7}+\sqrt{6}}{\sqrt{7}-\sqrt{6}}$ b. $\frac{\sqrt{7}-\sqrt{6}}{\sqrt{7}+\sqrt{6}}$ c. $\sqrt{7}+\sqrt{6}$ d. $\sqrt{7}-\sqrt{6}$
9. Which of the following is true?
a. Every whole number is a natural number
b. (b) Every integer is a rational numberc. Every rational number is an integer
d . Every integer is a whole number
10. For Positive real numbers a and b, which is not true?
a. $\sqrt{ab} = \sqrt{a}\sqrt{b}$ b. $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$ c. $(\sqrt{a} + \sqrt{b})(\sqrt{a} - \sqrt{b}) = a + b$
b. d. $(a + \sqrt{b})(a - \sqrt{b}) = a^2 - b$
11.The value of n for which \sqrt{n} be a rational number is
(a) 2 (b) 4 (c) 3 (d) 5
12. $\frac{3\sqrt{12}}{6\sqrt{27}}$ equals
a. $\frac{1}{2}$ b. $\sqrt{2}$ c. $\sqrt{3}$ d. $\frac{1}{2}$
13. Every rational number is
a. Whole number b. Natural number c. Integer d. Real number

 $14.3\sqrt{6} + 4\sqrt{6}$ is equal to:

- a. $6\sqrt{6}$ b. $7\sqrt{6}$ c. $4\sqrt{12}$ d. $7\sqrt{12}$

15. $\sqrt{6}$ x $\sqrt{27}$ is equal to:

- a. $9\sqrt{2}$ b. $3\sqrt{3}$ c. $2\sqrt{2}$ d. $9\sqrt{3}$

16. Which of the following is equal to x^3 ?

- a. $x^6 x^3$ b. $x^6 \cdot x^3$ c. x^6/x^3
- d. $(x^6)^3$

17. Which of the following is an irrational number?

- a. √23
- b. √225
- c. 0.3796
- d. 7.478478

18. The value of $\sqrt{10}$ times $\sqrt{15}$ is equal to

- a. $5\sqrt{6}$ b. $\sqrt{25}$ c. $10\sqrt{5}$ d. $\sqrt{5}$

19. The value of $125^{-\frac{1}{3}}$ is :

- a. $\frac{1}{5}$ b. $\frac{1}{25}$ c. 5 d. 15

20. 0.6666.... in $\frac{p}{q}$ form is

- a. $\frac{2}{3}$ b. $\frac{6}{99}$ c. $\frac{3}{5}$ d. $\frac{1}{66}$

SUBJECTIVE QUESTIONS

21. Locate $\sqrt{3}$ on the number line.

22. Represent $\sqrt{(9.3)}$ on the number line.

23. What is the value of (256)^{0.16} X (256)^{0.09}?

24. Evaluate: $(\sqrt{5} + \sqrt{2})^2 + (\sqrt{8} - \sqrt{5})^2$

25. Find the square root of 10 + $\sqrt{24}$ + $\sqrt{60}$ + $\sqrt{40}$

26. If $x = 9 + 4\sqrt{5}$, find the value of $\sqrt{x} - \frac{1}{\sqrt{x}}$.

27. Find 'x', if $2^{x-7} \times 5^{x-4} = 1250$.

28. Simplify:

$$\frac{3\sqrt{2}}{\sqrt{6}-\sqrt{3}} - \frac{4\sqrt{3}}{\sqrt{6}-\sqrt{2}} + \frac{2\sqrt{3}}{\sqrt{6}+2}.$$

29. Prove that:

$$\frac{1}{1+\sqrt{2}} + \frac{1}{\sqrt{2}+\sqrt{3}} + \frac{1}{\sqrt{3}+\sqrt{4}} + \dots + \frac{1}{\sqrt{8}+3} = 2.$$

30. Find a and b, if

$$\frac{2\sqrt{5} + \sqrt{3}}{2\sqrt{5} - \sqrt{3}} + \frac{2\sqrt{5} - \sqrt{3}}{2\sqrt{5} + \sqrt{3}} = a + \sqrt{15}b$$

31. If $x^a = y$, $y^b = z$ and $z^c = x$, then prove that abc = 1

32. Prove that:

$$\frac{x^{-1}}{x^{-1} + y^{-1}} + \frac{x^{-1}}{x^{-1} - y^{-1}} = \frac{2y^2}{y^2 - x^2}.$$

33. If $x = \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}$ and $y = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}$, find the value of $x^2 + y^2 + xy$.

34. If
$$x = \frac{2 - \sqrt{5}}{2 + \sqrt{5}}$$
 and $y = \frac{2 + \sqrt{5}}{2 - \sqrt{5}}$, find the value of $x^2 - y^2$.

35. If
$$x = (2 + \sqrt{3})$$
, find the value of $x^2 + \frac{1}{x^2}$.

36. Find six rational numbers between 3 and 4.

37. What is the value of
$$5^0 + 2^2 + 4^0 + 7^1 - 3^1$$
?

38. Prove that

(i)
$$\left(\frac{x^a}{x^b}\right)^{a^2+ab+b^2} \times \left(\frac{x^b}{x^c}\right)^{b^2+bc+c^2} \times \left(\frac{x^c}{x^a}\right)^{c^2+ca+a^2} = 1$$

(ii)
$$\left(\frac{x^a}{x^{-b}}\right)^{a^2-ab+b^2} \times \left(\frac{x^b}{x^{-c}}\right)^{b^2-bc+c^2} \times \left(\frac{x^c}{x^{-a}}\right)^{c^2-ca+a^2} = 1$$

(iii)
$$\left(\frac{x^a}{x^b}\right)^c \times \left(\frac{x^b}{x^c}\right)^a \times \left(\frac{x^c}{x^a}\right)^b = 1$$

40. Prove that

$$(i)\frac{1}{1+x^{a-b}} + \frac{1}{1+x^{b-a}} = 1$$

$$(ii)\frac{1}{1+x^{b-a}+x^{c-a}} + \frac{1}{1+x^{a-b}+x^{c-b}} + \frac{1}{1+x^{b-c}+x^{a-c}}$$

- 41. Give an example of each, of two irrational numbers whose:
 - (i) difference is a rational number.
 - (ii) difference is an irrational number.
 - (iii) sum is a rational number.
 - (iv) sum is an irrational number.
 - (v) product is a rational number.
 - (vi) product is an irrational number.
 - (vii) quotient is a rational number.
 - (viii) quotient is an irrational number.
- 42. Write the value of $\{5(8^{1/3} + 27^{1/3})^3\}^{1/4}$

43. Simplify:

$$\frac{\left(2^5\right)^2 \times 7^3}{8^3 \times 7}$$

$$\frac{25 \times 5^2 \times t^8}{10^3 \times t^4}$$

$$\text{iii} \ . \ \frac{3^5 \times 10^5 \times 25}{5^7 \times \ 6^5}$$

44. If
$$x = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}$$
, find i. $x^2 + \frac{1}{x^2}$

45. If
$$x = 2 + \sqrt{3}$$
, find $x^4 + \frac{1}{x^4}$.

46. Represent the real number $\sqrt{7}$ on the number line.

47. Simplify
$$\frac{\sqrt{32} + \sqrt{48}}{\sqrt{8} + \sqrt{12}}$$

48. Simplify by rationalising the denominator: $\frac{4+\sqrt{5}}{4-\sqrt{5}} + \frac{4-\sqrt{5}}{4+\sqrt{5}}$.

49. If
$$2^a = 3^b = 6^c$$
 then show that $c = \frac{ab}{a+b}$.

50. If
$$x = \frac{\sqrt{p+q} + \sqrt{p-q}}{\sqrt{p+q} - \sqrt{p-q}}$$
, then find the value of $qx^2 - 2px + q$.